An Efficient Functionalization Methode for the Multiwalled Carbon Nanotubes and Their Applications in PMMA Bone Cement

نویسندگان

  • Yongzhi Xu
  • Youzhi Wang
  • Lei Cui
چکیده

In this work, an efficient procedure for the functionalization of multiwalled carbon nanotube (MWCNTs) based on nitric acid oxidation was presented. The morphologies of MWCNTs oxidized under various conditions were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The FTIR provided clear evidence for the presence of carboxylic groups (–COOH) attached to the surface of MWCNTs resulting from the acid treatment. The unfunctionalised MWCNTs(pMWCNTs) and carboxy1 functionalized MWCNTs (f-MWCNTs) were successfully applied into the Polymethyl methacrylate (PMMA) bone cement. The resultant mechanical experiment indicated that the f-MWCNTs were a promising additive to improve the compressive strength and bend strength of the PMMA bone cement. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analyzed by SEM. Improvements in mechanical properties were attributed to the MWCNTs arresting or retarding crack propagation through the cement by providing a bridging effect into the crack, normal to the direction of crack growth. Copyright © 2013 IFSA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One Pot Chemically Attachment of Amino Groups on Multi walled Carbon Nanotubes Surfaces

Functionalization of multiwalled carbon nanotubes (MWCNTs) with NH2 groups under a one pot reaction is studied. During the first step of the reaction, Cl and CHCl2 groups were attached to the surfaces of MWCNTs through an electrophilic addition reaction. In the second step of process, Cl atoms were replaced with NH2 and amino groups (ethylene diamine and but...

متن کامل

New method for preparation of MWCNT-SO3H as an efficient and reusable catalyst for the solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones

Multiwalled carbon nanotubes (MWCNTs) have been functionalized with -SO3H groups using new three steps chemical routes. Firstly, OH groups have been attached to CNT surfaces through a radical reaction. The second step involves converting the hydroxyl groups into the oxide one and last step included the attachment of –SO3H groups on the MWCNTs surfaces in the presence of 1-butyl-3-methyl imidazo...

متن کامل

New method for preparation of MWCNT-SO3H as an efficient and reusable catalyst for the solvent-free synthesis of 3,4-dihydropyrimidin-2(1H)-ones/thiones

Multiwalled carbon nanotubes (MWCNTs) have been functionalized with -SO3H groups using new three steps chemical routes. Firstly, OH groups have been attached to CNT surfaces through a radical reaction. The second step involves converting the hydroxyl groups into the oxide one and last step included the attachment of –SO3H groups on the MWCNTs surfaces in the presence of 1-butyl-3-methyl imidazo...

متن کامل

Functionalization of carbon nanotubes and its application in nanomedicine: A review

This review focuses on the latest developments in applications of carbon nanotubes (CNTs) in medicine. A brief history of CNTs and a general introduction to the field are presented. Then, surface modification of CNTs that makes them ideal for use in medical applications is highlighted. Examples of common applications, including cell penetration, drug delivery, gene delivery and imaging, are giv...

متن کامل

Effect of barium-coated halloysite nanotube addition on the cytocompatibility, mechanical and contrast properties of poly(methyl methacrylate) cement

Halloysite nanotubes (HNTs) were investigated as a platform for tunable nanoparticle composition and enhanced opacity in poly(methyl methacrylate) (PMMA) bone cement. Halloysite has been widely used to increase the mechanical properties of various polymer matrices, in stark contrast to other fillers such as barium sulfate that provide opacity but also decrease mechanical strength. The present w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013